PKA type IIalpha holoenzyme reveals a combinatorial strategy for isoform diversity.
نویسندگان
چکیده
The catalytic (C) subunit of cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) is inhibited by two classes of regulatory subunits, RI and RII. The RII subunits are substrates as well as inhibitors and do not require adenosine triphosphate (ATP) to form holoenzyme, which distinguishes them from RI subunits. To understand the molecular basis for isoform diversity, we solved the crystal structure of an RIIalpha holoenzyme and compared it to the RIalpha holoenzyme. Unphosphorylated RIIalpha(90-400), a deletion mutant, undergoes major conformational changes as both of the cAMP-binding domains wrap around the C subunit's large lobe. The hallmark of this conformational reorganization is the helix switch in domain A. The C subunit is in an open conformation, and its carboxyl-terminal tail is disordered. This structure demonstrates the conserved and isoform-specific features of RI and RII and the importance of ATP, and also provides a new paradigm for designing isoform-specific activators or antagonists for PKA.
منابع مشابه
Solution scattering reveals large differences in the global structures of type II protein kinase A isoforms.
Isoform diversity within the protein kinase A (PKA) family is achieved by catalytic (C) subunits binding to different isoforms of regulatory subunit homodimers (R2). In a previous small-angle X-ray scattering study, we showed that the type Ialpha R2 homodimer has a distinctive Y-shaped structure, while the IIalpha and IIbeta homodimers are highly flexible and extended in solution. Here we prese...
متن کاملDeletion of type IIalpha regulatory subunit delocalizes protein kinase A in mouse sperm without affecting motility or fertilization.
Cyclic AMP stimulates sperm motility in a variety of mammalian species, but the molecular details of the intracellular signaling pathway responsible for this effect are unclear. The type IIalpha isoform of protein kinase A (PKA) is induced late in spermatogenesis and is thought to localize PKA to the flagellar apparatus where it binds cAMP and stimulates motility. A targeted disruption of the t...
متن کاملLocalization and quaternary structure of the PKA RIβ holoenzyme.
Specificity for signaling by cAMP-dependent protein kinase (PKA) is achieved by both targeting and isoform diversity. The inactive PKA holoenzyme has two catalytic (C) subunits and a regulatory (R) subunit dimer (R(2):C(2)). Although the RIα, RIIα, and RIIβ isoforms are well studied, little is known about RIβ. We show here that RIβ is enriched selectively in mitochondria and hypothesized that i...
متن کاملThe conformationally dynamic C helix of the RIalpha subunit of protein kinase A mediates isoform-specific domain reorganization upon C subunit binding.
Different isoforms of the full-length protein kinase A (PKA) regulatory subunit homodimer (R2) and the catalytic (C) subunit-bound holoenzyme (R2C2) have very different global structures despite similar molecular weights and domain organization within their primary sequences. To date, it has been the linker sequence between the R subunit dimerization/docking domain and cAMP-binding domain A tha...
متن کاملR-subunit isoform specificity in protein kinase A: distinct features of protein interfaces in PKA types I and II by amide H/2H exchange mass spectrometry.
The two isoforms (RI and RII) of the regulatory (R) subunit of cAMP-dependent protein kinase or protein kinase A (PKA) are similar in sequence yet have different biochemical properties and physiological functions. To further understand the molecular basis for R-isoform-specificity, the interactions of the RIIbeta isoform with the PKA catalytic (C) subunit were analyzed by amide H/(2)H exchange ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Science
دوره 318 5848 شماره
صفحات -
تاریخ انتشار 2007